If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+19x+3=0
a = 12; b = 19; c = +3;
Δ = b2-4ac
Δ = 192-4·12·3
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{217}}{2*12}=\frac{-19-\sqrt{217}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{217}}{2*12}=\frac{-19+\sqrt{217}}{24} $
| g2+23)g=6 | | (x3-4x2+4x-1)÷(x=-1) | | 4(5x+1)-9=20x-5 | | x=2837.51-0.054203x | | 2b+9)b=3 | | 4w+10=2w+60=180 | | 90+(2x-3)=(10x-17) | | s^2+2-6=0 | | 2(b+1)−1=7 | | 3r+9=11 | | 6b)b=7 | | 30h–10.5=138 | | ¾+2x=5/4 | | 3x+15=12x-22 | | 3-x=98 | | 2(n-5)=2(6+n) | | 100=37.62+.50x | | 16c=627 | | 4+3z=13 | | 1.3m+8=20 | | 9r+48=50 | | 2(3y-1)=-14. | | 80=39.85+.50x | | 90=h+10+4h | | 7(x-3)=9x-17 | | -3.45+x=12.87 | | 9x^2-6x-49=0 | | -10v-12=19 | | 2/3x-15=20 | | (9x-2)+(19x-3)+(19x-3)=180 | | x+.08x=348 | | y=19/30 |